
3964. Proposed by George Apostolopoulos.

Let P be an arbitrary point inside a triangle ABC. Let a,b and c be the distances

from P to the sides BC,AC and AB, respectively. Prove that
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where R denotes the circumradius of ABC. When does the equality occur?

Solution by Arkady Alt , San Jose ,California, USA.

For representation of solution we will use common and essential notations for

sidelengths a : BC,b : CA,c : AB and for distances from P to the sides BC,AC

and AB respectively x,y, z.So, original inequality becomes
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Let F be area of the triangle. Then ax  by  cz  2F and applying Cauchy Inequality

to triples ax , by , cz and 1
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we obtain
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And since a2  b2  c2  ab  bc  ca we obtain 1
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